New insights on the structure formation of the Universe delivered by detailed properties of thousands of galaxy clusters

Prof.

Alexis

Finoguenov

Department of Physics, University of Helsinki. Finland

February 12, 2025 12:30 PM

The use of galaxy clusters as cosmological probes relies on a detailed understanding of their properties. They define cluster selection and ranking linked to a cosmologically significant cluster mass function. Previous studies have employed small samples of clusters, concentrating on achieving the first calibrations of cluster properties with mass, while the diversity of cluster properties has been revealed via detailed studies. The large spectroscopic follow-up on the CODEX cluster sample with SDSS and NOT enables a detailed study of hundreds of clusters, lifting the limitations of previous samples. We report on the scaling relations between richness, X-ray luminosity, and velocity dispersion for a complete sample of clusters with at least 15 members. Clusters with velocity substructure exhibit enhanced velocity dispersion for a given richness and are characterized by 2.5 times larger scatter. Clusters that have a strong offset in X-ray-to-optical centres have comparable scaling relations as clusters with substructure. We demonstrate that there is a consistency in the parameters of the scaling relations for the low- and high-richness galaxy clusters. Splitting the clusters by redshift, we note a decrease in scatter with redshift in all scaling relations. We localize the redshift range where a high scatter is observed to z < 0.15, which is in agreement with the literature results on the scatter. We note that the increase in scatter for both high- and low-luminosity clusters is z < 0.15, suggesting that both cooling and the resulting active galactic nucleus feedback are at the root of this scatter. We report a dependence of both the X-ray and optical luminosity of clusters on large-scale density, which we associate with the assembly bias. These results motivate an introduction of an additional characterization of galaxy clusters and shed light on the physical origin of anomalous clustering of galaxy clusters, found by the Dark Energy Survey (DES).

This is a hybrid event:
Room D, the Institute of Physics PAS, Al. Lotników 32/46

Online: Zoom Link, (Passcode: 134595, Meeting ID: 823 8038 0442)