
# Introduction to atomic physics

Movie 4a

### Summary



Hamiltonian for proton and electron: Role of mass

Hamiltonian for proton and electron.

$$\hat{H} = \hat{H}_{CM} + \hat{H}_{rec}$$

center of  $-\frac{\hbar^2}{2\mu}\Delta - \frac{\pi}{4\pi\epsilon_0}\frac{e^2}{r}$ 

Hamiltonian as before

BUT with  $\mu = \frac{m_e \cdot m_{nucleus}}{m_c + m_{nucleus}}$ 



Harold Urey

1931, Urey, experiment: "splitting" of spectrum in agreement with correction me (1+ mproton)

in agreement with (1+ me)

Discovery Of Deuterium!!

Urey experiment: confirmation that Hydrogen exist in more than one form Spectoscopy => mass of cores of isotopes 1932 - discovery of neutrons (Chedwill) Length scale of atom (radius of Bohn orbit) qn d 47:4 n² n² reduced mass if m increases - electron closer to come For different isotopes - small correction BUT: One can replace electron with muon! Muon, M charge = charge of electron

Hor mais: 200 havier than the

mais of electron ju is muon not mess.  $n + p = p + p + p + \pi^-$ neutron proton Creation: accderetors π = de con μ + V reutvin, come neutrons + protons u INSIDE the nucleus Observed spectrum, for spherical core,

## Introduction to atomic physics

Movie 4b

#### Interaction between magnetic dipoles

"Classical electrodynamics" John David Jackson, Chapters 5.7 (interaction) and 5.8 (hyperfine splitting)

Hyperfine splitting

$$\frac{\vec{\mu} = \frac{e}{2mc} \times \vec{S}_{e}}{\vec{\mu} \times \vec{\mu}_{e}} = \frac{\vec{\mu}_{e}}{\vec{\mu}_{e}} \times \vec{\mu}_{e} \times \vec$$

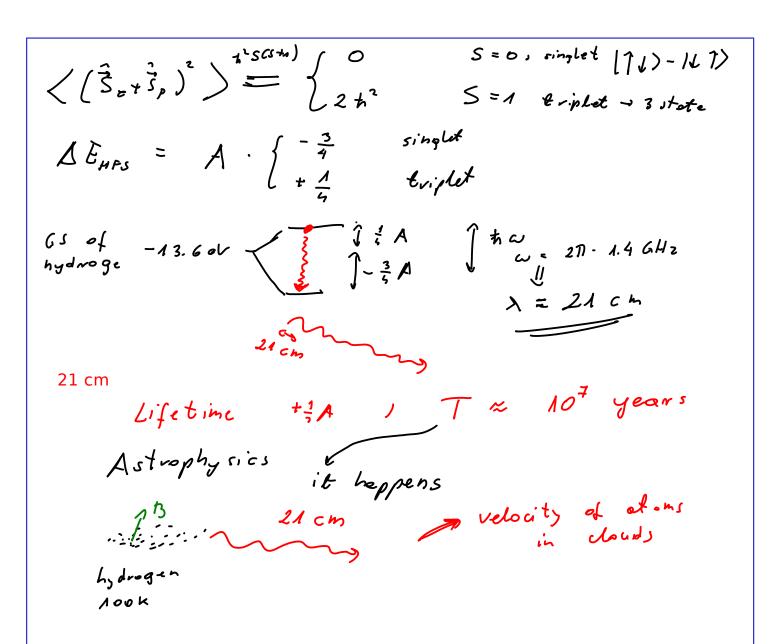
#### Hyperfine splitting

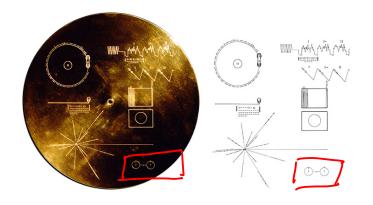


$$E_{n,i,s} = -\frac{|E_{6s}|}{n^2} + \Delta E_{Ls} + \Delta E_{\mu F s}$$

$$\Delta \dot{t}_{HFS} = \int d^3r \left[ \Delta \dot{r}_{nlms} \right]^2 \cdot \Delta \dot{f}_{nFS}$$

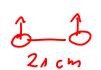
$$L = 0 \Rightarrow m = 0$$


$$\Delta \dot{r}_{nlms} = \int d^3r \left[ \Delta \dot{r}_{nFS} \right]^2 \cdot \Delta \dot{f}_{nFS}$$


Enrico Fermi

$$\Delta E_{HPS} = \langle \Delta \hat{H}_{HFS}^{(2)} \rangle = - |F_{S}(0)|^{2} \cdot \frac{2}{3} \mu_{s} \dot{h}^{2} \langle \dot{\vec{\mu}}_{e} \dot{\vec{\mu}}_{p} \rangle_{\dot{h}^{2}}$$

$$= + \frac{2}{3} |F_{S}(0)|^{2} \mu_{s} \delta_{e} \delta_{p} \frac{e^{2} \dot{h}^{2}}{2m_{p}m_{e}} \cdot \langle \dot{\vec{s}}_{e} \dot{\vec{s}}_{p} \dot{\vec{s}}_{p} \rangle_{\dot{h}^{2}}$$


$$\left\langle \frac{\vec{s}_{e} \cdot \vec{s}_{p}}{\vec{s}_{e}} \right\rangle = \frac{1}{2} \frac{1}{4^{2}} \left\langle \left(\vec{s}_{e} + \vec{s}_{p}\right)^{2} - \frac{\hat{s}_{e}^{2}}{4^{2}} - \frac{\hat{s}_{p}^{2}}{4^{2}} \right\rangle$$





THE plate on the board Pioneer 10 space probe

Where is it now?

