A Monte Carlo method for stationary solutions of general-relativistic Vlasov systems

Prof.

Patryk

Mach

Institute of Theoretical Physics, Jagiellonian University

November 6, 2024 12:30 PM

I will discuss a Monte Carlo method designed to compute stationary solutions of the general-relativistic Vlasov equation describing a gas of non-colliding particles. Our method consists of three elements: 1) selecting a set of parameters of individual trajectories, which correspond to assumed properties of the distribution function (e.g., initial, asymptotic or boundary conditions), 2) solving geodesic equations for the selected sample of parameters, 3) implementing a suitable coarse-graining scheme, which yields approximations to observable quantities (particle current density, energy momentum tensor). I will discuss difficulties associated with problems 1) and 3), providing a collection of examples related with stationary accretion models in the Schwarzschild spacetime. In the second part I will also show an application to accretion of the collisionless gas onto moving black holes.

This is a hybrid event:
Room D, the Institute of Physics PAS, Al. Lotników 32/46

Online: Zoom Link, (Passcode: 134595, Meeting ID: 823 8038 0442)